
Dynamic Cluster Configuration Algorithm in  
MapReduce Cloud 

 

Rahul Prasad Kanu , Shabeera T P , S D Madhu Kumar 

 

Computer Science and Engineering Department,  
National Institute of Technology Calicut 

Calicut, Kerala- 673601 
 
Abstract— With the exponential growth of Data in recent time, 
industry and academia started looking for an intelligent data 
analysis tool that would satisfy the need of current 
requirements in storage and analysis of huge amount of data. 
The data growth is largely due to the impact of social media, 
scientific experiments and file logs created by different 
departments around the globe. MapReduce, proposed by 
Google in 2004 became popular for doing large scale data 
analysis. Industry is also concentrating on providing resources 
and services on demand, cost effectively and with high 
performance. Implementing MapReduce in cloud requires 
creation of clusters, where the Map and Reduce operations 
can be performed. Optimizing the overall resource utilization 
without compromising with the efficiency of availing services 
is the need for the hour. Selecting right set of nodes to form 
cluster plays a major role in improving the performance of the 
cloud. As a huge amount of data transfer takes place during 
the data analysis phase, network latency becomes the defining 
factor in improving the QoS of the cloud. In this paper we 
propose a novel Cluster Configuration algorithm that selects 
optimal nodes in a dynamic cloud environment to configure a 
cluster for running MapReduce jobs. The algorithm is cost 
optimized, adheres to global resource utilization and provides 
high performance to the clients. The proposed Algorithm gives 
a performance benefit of 35% on all reconfiguration based 
cases and 45 % performance benefit on best cases. 
 
Keywords— MapReduce, Hadoop, Cloud Computing, 
MapReduce Cloud 

I. INTRODUCTION 

In last decade, scientific research trend have become 
increasingly reliant on processing huge volume of data. The 
data inflow has come from various fields such as Social 
Media, Weather Service Centre and Organization such as 
Newyork Stock Exchange. People send large volume of      
unstructured data in the form of messages and photographs. 
People have started creating tools to use and analyze these 
data. The overall impact of all these can be seen in near 
future.      Since the size of the data is growing at a much 
higher rate than the rate of accessing the data [18], it 
became very important to create new system which can 
handle huge volume of data without deteriorating the 
performance. New concepts like Cloud computing, 
MapReduce and its open source implementation Hadoop 
became widely accepted for doing large scale data analysis. 
While cloud computing offers raw computing power in the 
form of storage and other services, there is a requirement of 
distributed framework to harness the power of cloud easily 
and efficiently. Google in 2004 introduced a model known 

as MapReduce [19], which was capable of handling 
execution of large distributed jobs in cloud infrastructure.  
 
It has been found that operating cost of data centers have 
doubled in last 5 years and 75% of investment has been on 
infrastructure and energy consumption [5]. Gartner's survey 
[8] shows that enterprises invest 39% of their IT budget in 
Cloud. Improving the global resource utilization can reduce 
the overall infrastructure cost. Selecting the right set of 
nodes to form a cluster is one of the prime factors resulting 
in improved global resource utilization. Network Latency is 
one of the major factors of energy consumption in a cloud 
[17]. Hence we propose a Dynamic Cluster Configuration 
algorithm which reduces the network latency and can 
improve the utilization of the cloud resources without 
compromising with the efficiency of the cloud.  
 
The test of the paper is organized as follows: Section 2 
discusses on basics of Cloud Computing, MapReduce 
Framework, MapReduce Cloud and Hadoop. Section 3 
highlights the related works that have been done in the field 
of MapReduce Cloud. Section 4 presents the proposed 
Dynamic Cluster Configuration algorithm. Section 5 
presents the simulation setup used to test the proposed 
algorithm. Section 6 outlines the Results and analysis and 
Section 7 concludes the paper. 

II. BASICS 

A. Cloud Computing 

Cloud Computing is a utility based computing that provides 
users with on demand, low cost and flexible services. 
Services can be both application delivered on internet or the 
hardware and software installed at the data center. The 
recent survey of Gartner[8] shows that the spending in 
cloud computing by various enterprises  in IT budget has 
grown by 39% . Small companies benefit these services via 
access to resource without having need for prior 
investment. Cloud computing environment comprises of 
different models such as Software-as-a-Service(SaaS), 
Platform-as-a-Service(PaaS) and Infrastructure-as-a-
Service(IaaS) [12]. The client sends their requests to the 
cloud service providers. These providers allocate resources 
to process the client's requests and earn via pay as you use 
model. Some of the major Cloud providers are Amazon 
EC2 [10], Microsoft Azure[11], GoGrid [4] and Rackspace 
cloud [7]. 
 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4028



B. MapReduce Framework 

MapReduce distributed data analysis framework was 
proposed by Google in 2004. It provides an easy to use 
programming model that featured fault tolerance, automatic 
parallelization, scalability and data locality based 
optimization[6]. Due to its feature of fault tolerance, 
MapReduce framework is suitable for handling large 
distributed jobs in dynamic environment such as cloud. In 
MapReduce framework, the data is broken down into small 
blocks and distributed on multiple machines called data 
nodes.  MapReduce works with two functions: Map and 
Reduce. The nodes that perform the Map or Reduce tasks 
are called compute nodes. The map function takes the input 
data and generates a key value pair. Figure 2.1 shows the 
MapReduce execution overview. This key value pair is 
stored in the local disk as intermediate file. These 
intermediate key value pairs are shuffled/sorted and passed 
to the reducer. This assignment is controlled by the master 
node. The Reduce task then combines the results of all the 
key-value pairs and then generates the desired output [15]. 
 

 
Figure 2.1 MapReduce Execution Overview [4] 

C. MapReduce Cloud 

MapReduce cloud is a model which can provide 
MapReduce as a Service to the clients. Once a MapReduce 
job gets submitted to the cloud it enters the job queue. The 
master processes the job to know the nature of the job. The 
scheduling algorithm schedules the job according to the 
nature of the job. After scheduling the job, a MapReduce 
Cluster is configured in the cloud that can handle the 
MapReduce job. The job is processed within the cluster and 
the result is sent back to the client. For the creation of a 
cluster, nodes are required that are provided from the pool 
of resources in the cloud. Since the number of resources can 
vary, we need to select the right set of resources that can 
form a cluster and also reduce the network latency while 
processing MapReduce jobs. 
 The major challenges of MapReduce Cloud are: 
Storage of Data: The performance of any data intensive 
MapReduce task is highly dependent on the storage location 
of data. If the storage is not optimized, the network latency 
will be increased as a result of data transfer taking place 
between the Map and Reduce phases of processing. 
Communication Consistency: This is the result of network 
sharing. When different nodes are exhibiting data transfer at 
the same time, communication consistency can become a 
defining factor. 

 
Reliability: MapReduce can recover from node failure but 
if the master node fails then the whole system fails. So the 
reliabilitty of master node is a major challenge. 
Consistency of Performance: As the underlying 
infrastructure may not be same, at extreme load conditions 
the performance of those nodes can fluctuate which cause 
the performance to deteriorate [2]. 

D. Hadoop 

Hadoop is an open source implementation of MapReduce 
framework that can handle the distribution of data in a large 
set of commodity machines and then use efficient 
mechanisms to analyze those data. These mechanisms come 
in the form of Map and Reduce functions which has 
contributed to the wide use of Hadoop. Hadoop handles its 
data distribution with its Hadoop Distributed File System. 
Main components of Hadoop are Hadoop Distributed File 
System(HDFS) and MapReduce. Hadoop Distributed File 
System(HDFS) and MapReduce follow Master Slave 
architecture[14]. The main components of HDFS are 
NameNode, Secondary NameNode and DataNodes. The 
main components of MapReduce are JobTracker and 
TaskTrackers. The request enters the Hadoop cluster 
through the NameNode. JobTracker keeps track of the jobs 
and does the distribution of jobs into various TaskTrackers. 
There is one TaskTracker per node in the cluster. The 
individual task monitoring is done by the TastTracker and it 
sends the progress report to the JobTracker. These tasks are 
generally map or reduce type. So the JobTracker basically 
tries to divide the tasks such that data locality to complete 
the task is maintained. Figure 2.2 shows the Hadoop 
architecture along with the responsibilities of the different 
components.    

 
Figure 2.2 Hadoop Architecture [16] 

III. RELATED WORKS 

     MapReduce has been a phenomenon in the dimension of 
how we perform data analysis. Its excellent feature of fault 
tolerance in a brittle cloud environment made it suitable for 
distributed data analysis. Enterprises such as Amazon, 
Microsoft and Google have created their own MapReduce 
cloud to provide MapReduce as an on demand service. 
Amazon Elastic MapReduce (EMR) provides MapReduce 
service hosted within the Amazon infrastructure[10]. EMR 
is a hosted Apache Hadoop MapReduce framework which 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4029



utilizes Amazon EC2[10] for computing power and 
Amazon S3[10] for data storage. It allows the users to 
perform Hadoop MapReduce computation via a web 
application interface. When a MapReduce job is processed, 
the data has to be copied from Amazon S3 to Amazon EC2 
and the computation is performed on the local copy of 
Amazon EC2.  
AzureMapReduce[6] is a distributed decentralized 
MapReduce runtime for Windows Azure that was 
developed using Azure cloud infrastructure services. Azure 
uses Azure queues for map and reduce task scheduling, 
Azure tables for metadata and monitoring storage data and 
Windows Azure compute workers to perform the 
computations. Google AppEngine MapReduce[6] is an 
open source library aimed at performing open source 
MapReduce computations. The AppEngine services 
perform the MapReduce computations. The experimental 
release only contains the mapper library while reduce phase 
is part of planned enhancement. 
There have been other significant Models of MapReduce 
cloud. CURA[1] is a cloud managed model where clients 
submit jobs and the respective deadlines. It has a profiling 
and analysis service and a Resource management system. 
This resource management system consist of Secure instant 
VM allocation, job scheduler and VM pool manager. 
Secure instant VM allocation is a scheme where after 
completion of job Hadoop instance of the cluster is 
removed but re-initialization of the cluster can done for 
other jobs. The VM pool Manager understands the current 
workload and reconfigures the cluster to appropriate size by 
understanding the type of incoming jobs. The scheduling of 
jobs takes place via a reservation based policy. 
Comparatively analyzing above models, CURA doesn't 
require a separate unit for data storage.    
In CURA[1], the cloud resources are divided into pools of 
clusters. The pools are small size, large size or extra large 
size pools. These pools have a pre-determined setup of 
clusters. When the profiler sends the number of nodes to the 
cluster configuration function, the functions selects the 
ideal cluster pool and searches for the cluster. If no cluster 
of required size is found, a reconfiguration based algorithm 
is run which shrinks larger sized cluster into smaller size.  
The disadvantage with CURA's architecture is the 
application of reconfiguration based approach. Our 
proposed algorithm will be able to do the cluster 
configuration without the reconfiguration component. 
CURA do not create a large sized cluster from existing 
small sized cluster if there is a demand for large sized 
cluster and it does not have such a large sized cluster. In 
such cases CURA is incapable of handling jobs. For 
example, when there is a request for 4 node cluster and 
there are two clusters of size 2 available and there is no 
cluster of size 4 or above, CURA cannot process the 
request. 
In general there are three different operation models in 
cloud. The first operational model is a completely customer 
managed model where each job and its resources are 
specified by the customer on a per-job basis and the cloud 
provider only ensures that the requested resources are 
provisioned upon job arrival. Amazon Elastic Compute 

Cloud, Amazon Elastic MapReduce uses this model[1]. But 
this model has a drawback, since there is lack of global 
optimization across jobs. The second possible model is 
partly customer-managed and partly cloud-managed model. 
Customers specify which resources to use for their jobs and 
the cloud provider has the flexibility to schedule the jobs as 
long as they begin execution within a specified deadline. 
The cloud provider takes risk to make sure that all jobs 
begin execution within their deadlines and as advantage can 
potentially does better multiplexing of its resources. The 
third model is a completely cloud managed model where 
the customers only submit jobs and specify job completion 
deadlines. The cloud provider takes greater risk and 
performs a globally optimized resource management to 
meet the job SLAs for the customers. CURA is a cloud 
managed model. 

Since we aim to globally optimize resource management, 
we select cloud managed model as our operational approach 
for our proposed algorithm. We use an Integer Partitioning 
based dynamic clustering algorithm that will eliminate the 
concept of VM pools and will still be able to select the right 
set of nodes for Cluster configuration.   

IV. DYNAMIC CLUSTER CONFIGURATION ALGORITHM 

A. Design 

The client submits the job and its deadline to the cloud 
service provider. The job enters the job queue in the cloud. 
The job is scheduled by a dynamic scheduling algorithm 
that uses reservation based policy to schedule the job. Once 
the job is scheduled, the job passes through a profiling 
phase where on the basis of the nature of job and the 
deadline for job completion, optimal number of nodes is 
generated as output.  The output of the profiling phase is the 
optimal number of nodes that can perform the job. This 
number of nodes is passed through an Integer partitioning 
algorithm that generates all possible combination of 
numbers which result to the output of the profiling phase. 
The nodes are hence allocated to configure a cluster to 
handle the job. The proposed Cloud Cluster Configuration 
algorithm based on Integer Partitioning, makes sure that the 
nodes chosen for the configuration of cluster follows global 
resource optimization.   

B. Integer Partitioning Problem 

In number theory and combinatorics, a partition of a 
positive integer n, also called an integer partition, is a way 
of writing n as a sum of positive integers [3]. Two sums 
that differ only in the order of their summands are 
considered to be the same partition[12]; if order matters 
then the sum becomes a composition. For example, 4 can be 
partitioned in five distinct ways: 

: 4 
: 3 + 1 
: 2 + 2 
: 2 + 1 + 1 
: 1 + 1 + 1 + 1 

The order-dependent composition 1 + 3 is the same 
partition as 3 + 1, while 1 + 2 + 1 and 1 + 1 + 2 are the 
same partition as 2 + 1 + 1. There can be m ways of 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4030



representing n as a sum of positive numbers [9]. This paper 
generates Sk set of integers {x1 ; x2; x3::: xj} the summation 
of which results to sum n. The numbers are generated in 
descending order to reduce the network latency. The integer 
partitioning problem is also transformed with a constraint 
that any number from the number set that is generated is 
limited to a maximum value,predefined as max. 
The mathematical representation of the proposed algorithm 
is as follows: 

if Sk = {x1 ; x2 ; x3::: xj} is a set ∈ S where , 
k ≤ m 
such that 

 xi | x1 ≥ x2 ≥ x3 ≥  … ≥ xj 
and        
        j 
            Sk ∑ xi = n where for all xi ɛ Sk ≤ max 
                    i=1 
1 ≤ k ≤ m 

C. Proposed Algorithm 

Once the profiling phase generates the optimal number of 
nodes to handle the job, the output of the profiling phase is 
passed through the integer partitioning algorithm. All 
switches have the information of the number of active 
nodes inside switch. The partitioning function generates set 
of possible activenodes combination that are matched with 
the active nodes within a switch. The number generated in 
the set by the partitioning function is in decreasing order, 
hence the algorithm ensures that the network latency is 
minimum. This is because the switch which has maximum 
number of nodes free will get the precedence to form a 
cluster. The algorithm traverses through all the switches 
linearly to find the S1 set of combination as discussed in 
previous section. The algorithm terminates if a complete 
match is found otherwise it checks for set S2 that is 
generated through the partitioning algorithm. The algorithm 
uses the concept of windowing. There are two windows, 
left window and right window. Once the first match x1 from 
Sk is found the other values from the set are searched within 
the window range. This concept minimizes the network 
latency by minimizing the locality. The window is flexible 
and the cloud service provider can increase or decrease the 
size of the window. 
Algorithm 1 is the proposed clustering algorithm that can 
be used to avoid the reconfiguration stage in CURA. This 
algorithm uses Integer Partitioning approach. Once the 
profiler decides the right number of nodes, the algorithm 
checks for the optimal cluster configuration using the 
partition function that sends the combination of all possible 
switch combinations to the cluster setup function. 
The states of the switches are made alive until all the match 
are found. If at any time there is a mismatch, we roll back 
and change the state of the switches to the inactive state. All 
the switches of the racks have a variable called active nodes 
on the basis of the number of nodes that are free on the 
rack. Then through the mapping list which contains the 
information of the switch status, we use the coloring 
approach to greedily allocate nodes for handling the jobs. 
Each color represents active number of nodes on each 
switch. 

 
Figure 6.1 Best Case Analysis 

 

 
Algorithm 1 first selects the right switch combination, after 
that it checks for the nodes within those switch to do the 
cluster configuration. The colors which symbolizes the 
number of activenodes on the switches are changed 
accordingly until all the switches change their status to 
busy. For the implementation, we use StatusSwitch Array 
and NodeList Array. The switch id are numbered in 
ascending order of their index in the StatusSwitch array. 
The nodes are also stored in the same way in the NodeList 
array. We have assumed that the switches contain the same 
number of nodes, although this Algorithm can be extended 
to handle different number of nodes in a switch. 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4031



V. SIMULATION SETUP 

We have implemented the proposed system in Java and 
Swing API. Initially the cloud has no resources. The 
resources are gradually added to the cloud. These resources 
are switches and nodes. Once sufficient number of 
resources gets added, the cloud is ready to serve client 
requests. The implementation has features where the Cloud 
Service Provider can monitor and manage all his resources. 
The Cloud Service Provider has the freedom to add nodes 
as per his requirement. The system generates report where 
the Cloud Service Provider can view the information of 
client and the number of resources allocated to them. The 
algorithm is scalable and can be extended to any number of 
nodes. In the current simulation, we have fixed the 
maximum number to 500. 
CURA's experimental setups are identical. But it differs 
with our proposed algorithm in architecture. CURA needs 
to take care of management of pools of clusters, once 
sufficient number of switches and nodes are added, pools of 
clusters needs to be created. These pools also create an 
overhead of managing this cluster which deteriorates the 
performance of the existing CURA's implementation. While 
the implementation of Reconfiguration based component 
increases the cluster configuration time as nodes have to 
shut down to make the cluster small. The performance of 
the two algorithms is measured on run time of generating 
the cluster setup. The analysis is done on best cases and 
reconfiguration based cases. The network latency of the 
proposed algorithm is calculated taking .01 ms as inter-
switch delay between the nodes within the switch and 0.20 
ms as delay between switch to switch in message passing. 
The comparative performance of the experiments is 
evaluated by maintaining a clock that calculates the runtime 
of both the experiments. The experiments were run on a 
single CPU (64 bit, Intel Pentium(R) i3 CPU 2.1GHz) with 
4 GB RAM. 

 

Figure Flowchart of Proposed Algorithm 

VI.       RESULT AND ANALYSIS 

We found that the Integer Partitioning based Clustering 
Algorithm gives a better performance than the CURA 
clustering approach. The proposed algorithm has a 
performance improvement of over 35% on all 
reconfiguration based cases where there is a reconfiguration 
function applied on existing architecture. For the best case 
the performance benefit is over 45%. When there is no 
reconfiguration applied, both the algorithms gives 
comparable results. The proposed work has no overhead of 
managing Pools of cluster, which simplifies the 
management of cloud resources. All resources are identical 
as per our algorithm. CURA fails when there is an 
availability of two small clusters of size 2 and there is a 
requirement of size 4 cluster. It is not structured to integrate 
two small sized clusters, while the proposed algorithm has 
no such issues. The best case analysis result is obtained by 
considering identical cloud environments where there exists 
a cluster of same configuration. Once the client sends a 
request, both the algorithms run on the setup and the clock 
count is monitored. The clock count gives the effective time 
that the algorithm takes to execute. Through the analysis, 
we find that the execution times for 4, 5, 6 and 7 sized 
clusters are linearly increasing in case of CURA but in case 
of our algorithm the time required are found to be less. This 
is because our algorithm doesn't consider pool management 
and hence saves execution time. The line charts in figure 
6.1 and 6.2 shows the comparison.  
In Reconfiguration based cases, the proposed algorithm 
outperforms the existing cluster configuration model. The 
experiment is repeated where 1, 2 or 3 nodes had to be shut 
to configure a cluster. In all the cases, proposed algorithm 
performed better. This is because the reconfiguration 
components shut down computer. The more the number of 
computers it needs to shut down, more will be the execution 
time. The line chart shows the comparison. On average 
cases the results are identical and not much deviation was 
found. 
 

 
Figure 6.2 Reconfiguration Based Analysis 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4032



VII. CONCLUSION AND FUTURE WORK 

Cluster Configuration plays a vital role in improving the 
performance of a cloud. Especially while considering a 
MapReduce cloud where a lot of data transfer takes place 
during Map and Reduce phases. Inefficient cluster 
configuration can drastically increase network latency 
which results in deteriorated performance. Cloud Managed 
model improves the performance of the cloud by 
considering global optimization of resources. After 
implementation of the algorithm proposed in CURA and 
relatively comparing with our algorithm, we find that our 
algorithm reduces the complexity of the cloud by avoiding 
segregation of the cloud environment into various sized 
pools of clusters. This reduces the extra work of managing 
those clusters. The concept of reconfiguration of these 
cluster pools is also avoided as the proposed algorithm 
doesn't use any reconfiguration of existing cluster and thus 
further improves the performance in dual respect. 
The algorithm guarantees to provide optimal selection of 
resources with minimum network latency. It ensures global 
resource utilization in cloud. The proposed algorithm can 
be further improvised by automating the concept of 
windowing and incorporating it within the cluster 
configuration method. The algorithm has been tested on a 
homogeneous cloud. It can be extended to heterogeneous 
cloud also. The Cluster configuration algorithm can also be 
extended to work on any distributed cloud where a set of 
nodes are requested to process a particular task. 

REFERENCES 
[1]    Balaji Palanisamy, Aameek Singh, Ling Liu, and Bryan Langston. 

Cura: A  cost-optimized model for mapreduce in a cloud. In Parallel 
& Distributed Processing (IPDPS), 2013 IEEE 27th International  
Symposium on,  pages 1275{1286. IEEE, 2013. 

[2]    Novia Nurain, Hasan Sarwar, Md Sajjad, Moin Mostakim, et al. An 
in-   depth study of map reduce in cloud environment. In Advanced 

Computer     Science Applications and Technologies (ACSAT), 2012 
International     Conference on, pages 263{268. IEEE, 2012. 

[3]    Wikipedia, http://en.wikipedia.org/wiki/Partition_%28number_         
theory%29, Accessed on  21st May, 2014 

[4]    GoGrid , http://www.gogrid.com/. 
[5]    Jiankang Dong, Xing Jin, Hongbo Wang, Yangyang Li, Peng Zhang, 

and    Shiduan Cheng. Energy-saving virtual machine placement in 
cloud data   centers. In Cluster, Cloud and Grid Computing 
(CCGrid), 2013 13th        IEEE /ACM International Symposium on, 
pages 618{624. IEEE, 2013. 

[6]    Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geo_rey Fox. 
Mapreduce in the clouds for science. In Cloud Computing 
Technology   and Science (CloudCom), 2010 IEEE Second 
International Conference   on, pages 565{572. IEEE, 2010.        

[7]    Rackspace: The Open Cloud Company, http://www.rackspace.com/. 
[8]    Igou. User survey analysis: Cloud-computing budgets are growing 

and    shifting; traditional it services providers must prepare or perish. 
Gartner  Report, 2010. 

[9]    University of Pennsylvania,  Joseph Laurend. Partitions of integers. 
2005. 

[10]  An Amazon Company, http://aws.amazon.com/ 2014 
[11]  Microsoft, http://azure.microsoft.com/en-us/ ,2014 
[12] Wikipedia, http:..en.wikipedia.org/wiki.Cloudcomputing Accessed 

On        24th May, 2014     
[13]  Pragmatic Programming Techniques:  
 http://horicky.blogspot.in/2008/archive.html, Accessed on March 

2014 
[14]  Yahoo Developer Networks,  
 https://developer.yahoo.com/hadoop/tutorial/. 
[15]  Yahoo Developer Networks  

https://developer.yahoo.com/hadoop/tutorial/module4.html. 
[16]  Hadoop IN PRACTICE by Alex Holmes,    

http://www.sappers.co.in/category/hadoop/ 
[17]  Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain. 

Purlieus:    locality-aware resource allocation for mapreduce in a 
cloud. In  Proceedings of 2011 International Conference for High   
Performance Computing, Networking, Storage and Analysis, page 
58. ACM, 2011. 

[18]  O'Reilly; Third edition, Tom White. Hadoop: A definitive 
guide.2012 

[19]  Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data 
processing on large clusters." Communications of the ACM 
51.1(2008): 107-113. 

 
 
 

Rahul Prasad Kanu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4028-4033

www.ijcsit.com 4033




